Cheatsheets for AI, Neural Networks, Machine Learning, Big Data, etc.

Neural Networks*gccuMDV8fXjcvz1RSk4kgQ.png

Neural Networks Cheat Sheet

Neural Networks Graphs*hdcEBE3zH8bRCj_gyIQC9Q.png

Neural Networks Graphs Cheat Sheet*ytq3WnAg5KywR97gudy5vg.png*7XUd38YFCPAcgmlrS875XA.png

Neural Network Cheat Sheet

Machine Learning Overview*tEo4x2-2iOZcnhSF13rUTA.png

Machine Learning Cheat Sheet

Machine Learning: Scikit-learn algorithm

This machine learning cheat sheet will help you find the right estimator for the job which is the most difficult part. The flowchart will help you check the documentation and rough guide of each estimator that will help you to know more about the problems and how to solve it.*dYgEs2roROf3j2ANzkDHMA.png

Machine Learning Cheat Sheet


Scikit-learn (formerly scikits.learn) is a free software machine learninglibrary for the Python programming language. It features various classificationregression and clustering algorithms including support vector machinesrandom forestsgradient boostingk-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy.*k6_-XfgogqSqjgMJP6_8Iw.png

Scikit-Learn Cheat Sheet


This machine learning cheat sheet from Microsoft Azure will help you choose the appropriate machine learning algorithms for your predictive analytics solution. First, the cheat sheet will asks you about the data nature and then suggests the best algorithm for the job.*xCS2eayL2pZBhpQZhMXaIA.png


Python for Data Science*KHzoQS80C80_KLzNa9L_Mw.png

Python Data Science Cheat Sheet*v826QDZmnp68ZPHbVeggPg.png

Big Data Cheat Sheet


In May 2017 Google announced the second-generation of the TPU, as well as the availability of the TPUs in Google Compute Engine.[12] The second-generation TPUs deliver up to 180 teraflops of performance, and when organized into clusters of 64 TPUs provide up to 11.5 petaflops.*dtOZSuYDonyyBvEULpJALw.png

TesorFlow Cheat Sheet


In 2017, Google’s TensorFlow team decided to support Keras in TensorFlow’s core library. Chollet explained that Keras was conceived to be an interface rather than an end-to-end machine-learning framework. It presents a higher-level, more intuitive set of abstractions that make it easy to configure neural networks regardless of the backend scientific computing library.*uEv0-859Tp3GK5ynmoLq5w.jpeg

Keras Cheat Sheet


NumPy targets the CPython reference implementation of Python, which is a non-optimizing bytecode interpreter. Mathematical algorithms written for this version of Python often run much slower than compiled equivalents. NumPy address the slowness problem partly by providing multidimensional arrays and functions and operators that operate efficiently on arrays, requiring rewriting some code, mostly inner loops using NumPy.*o_CO_8Plpi2Ac3s-Gs5IQg.png

Numpy Cheat Sheet


The name ‘Pandas’ is derived from the term “panel data”, an econometricsterm for multidimensional structured data sets.*2RJpJMci8ysUbrFOCzPKAw.png

Pandas Cheat Sheet

Data Wrangling

The term “data wrangler” is starting to infiltrate pop culture. In the 2017 movie Kong: Skull Island, one of the characters, played by actor Marc Evan Jackson is introduced as “Steve Woodward, our data wrangler”.*YhTbz8b8Svi22wNVvqzneg.jpeg

Data Wrangling Cheat Sheet*3-mTHM3ejorJwLnjuIpVNQ.jpeg

Pandas Data Wrangling Cheat Sheet

Data Wrangling with dplyr and tidyr*vYkuWiG16YrrMfvh8EGIHA.jpeg

Data Wrangling with dplyr and tidyr Cheat Sheet*wQB2EWu09xdxmw00nwls2w.jpeg

Data Wrangling with dplyr and tidyr Cheat Sheet


SciPy builds on the NumPy array object and is part of the NumPy stack which includes tools like Matplotlibpandas and SymPy, and an expanding set of scientific computing libraries. This NumPy stack has similar users to other applications such as MATLABGNU Octave, and Scilab. The NumPy stack is also sometimes referred to as the SciPy stack.[3]*9gFze6fk9EHcm1bgJsmgFA.png

Scipy Cheat Sheet


matplotlib is a plotting library for the Python programming language and its numerical mathematics extension NumPy. It provides an object-orientedAPI for embedding plots into applications using general-purpose GUI toolkits like TkinterwxPythonQt, or GTK+. There is also a procedural“pylab” interface based on a state machine (like OpenGL), designed to closely resemble that of MATLAB, though its use is discouraged.[2] SciPymakes use of matplotlib.

pyplot is a matplotlib module which provides a MATLAB-like interface.[6]matplotlib is designed to be as usable as MATLAB, with the ability to use Python, with the advantage that it is free.*ykxp7OpgBXbRRHgjzSkeCA.png

Matplotlib Cheat Sheet

Data Visualization*GOqZNLbHU_d1rZ5qP5RuTQ.jpeg

Data Visualization Cheat Sheet*kHi0M3FgxGs4CtUW4Rsm-w.jpeg

ggplot cheat sheet


Pyspark Cheat Sheet


Big-O Algorithm Cheat Sheet*qiDoTgb6SrQ04cAFkvPPMQ.png

Big-O Algorithm Complexity Chart*IT8VfryP6k_uoG09iMw3Dg.png

BIG-O Algorithm Data Structure Operations*Ggl_e8v-IzxUdienwrTMZQ.png

Big-O Array Sorting Algorithms


0 条回复 A 作者 M 管理员
欢迎您,新朋友,感谢参与互动!欢迎您 {{author}},您在本站有{{commentsCount}}条评论