涌现论综述

系统转换

转换是系统从一种状态到另一种状态的变化,这种变化可能发生在系统的组成部分,在微观层面上,或者是整个系统的宏观层面的转换。涉及系统组成部分变化的微观层次变换可以理解为线性变换。在数学和逻辑中,转换是一个过程,通过这个过程,一个元素被转换成另一个元素,这个元素在某些重要方面是等价的,但是表达或表示方式不同。线性变换不会影响整个系统,而只是根据变换规则改变内部组件。

非线性转变是一个系统的结构和功能在宏观层面上的完全变化,这种变化造成或由系统环境的变化引起。这种宏观层面的非线性变化过程,我们称之为系统转变。

所有系统都存在于某个环境中,并在某种程度上由它们在该环境中的角色或功能来定义。系统通过与其他系统的交互来适应特定的环境。海滩上的卵石就是这样,因为它与海洋运动和周围的其他元素相互作用。植物就是这样,因为它进化的生态条件。同样,像USB棒这样的技术也有其结构和功能,因为它需要与其环境中的其他技术元素进行交互。

系统与其环境交换能量和物质,通过这种交换,它们的整体结构、组成和功能会被环境塑造和定义。只要系统保持在其环境的参数范围内,它就会保留这个整体宏观结构。组件可能会随着环境的变化而变化,但这不会对系统的转型产生整体影响。当一个系统超出其环境参数时,它就会被转换。不断变化的环境意味着一组全新的规则作用于系统,因此系统需要发展新的特性和功能来适应。

一个超过其环境极限的系统需要某种形式的转变。环境限制可能在空间、能源或系统运行所需的其他资源中。所有增长速度超过其环境的系统最终都会达到某种极限。这方面的一个经典例子是,当微生物找到新的食物来源时,微生物种群呈指数增长;迅速繁殖导致指数增长;最终变得人口过多,无法获得食物来源;达到极限并崩溃。

通常,当环境的极限得到满足时,就会出现危机。系统开始遇到限制,为其提供了需要发生变化才能继续运行的反馈。在这一阶段,系统必须进行改造,以便继续增长,崩溃到更低的水平,或者将其运行降低到正常环境下能够维持的水平。尽管这最后一个选项通常是不可能的,因为系统已经适应了以不可描述的方式运行,或者环境只是暂时的。例如,人的成长阶段是短暂的。一旦到了改变环境的时候,即出生、成为青少年或成年人,以前的环境就不复存在了。在这个阶段,只有两种选择,一种是无法发展到新的环境中,另一种是成功地进行了转变,或者说,一种是不会停留在旧的环境中。

一旦一个系统达到其环境的极限,它就开始接收反馈信号,这使得它越来越难以在当前的模式下运行。社会系统中的一个例子就是个人在接近某个极限时所经历的压力。比如过度工作可能给人带来的压力。当我们工作超过正常压力时,我们越远离正常工作状态,压力就越大。在这个阶段,我们

通过停止工作,我们可以选择回到以前的状态,或者最终,我们将达到某种极限,进入一个新的政权。

如果环境限制阻碍了系统的长期发展——例如,这个人非常努力地工作,因为他们必须按时完成一个项目才能得到提升并继续他们的职业生涯——并且不可能选择回到正常状态,那么这个系统必须寻找一种自我转变的方式,这就是探索可能性的状态。这意味着该系统将“探索”新的选项、不同的工作方式和组织方式,因为它已经发现了一个特殊的限制,不允许它进一步发展。例如,试图完成项目的人可能必须重新评估他们的整个操作模式,即他们的工作流程和组织方式。如果他们能找到一个新的组织系统,他们就能达到一个新的效率水平,达到下一个水平,这样他们就能转变成一个新的环境。

涌现在一个系统的转变中起着核心作用,因为在某个限度内,系统被迫创造一些新的、自组织的东西,形成一种更高效的新组织模式,从而使其能够在一个新的、更广泛的、更复杂的环境中运行;否则它必须回到以前的政权,或者崩溃到更低的水平。伦敦经济学院的Eve Mitleton – Kelly教授谈到了这种在转变中产生的新过程,就像这样,“当一个系统被推得远离平衡时,会发生以下特征来创造新秩序。它将自我组织,探索可能的解决方案,共同进化,新的结构将会出现,会有一种连贯性,但是精确的行为既无法预测也无法控制。”

这些宏观转变可以在经济和社会的长期发展中看到。自给自足的农业经济只能养活特定地区内的有限数量的人。如果一个社会要支持一个人口密度超过这个极限的人口,它的经济基础就必须转变成工业体制,这代表着一个全新的宏观结构,包括技术基础设施、经济组织和社会机构。环境之间的这一临界极限代表了一个相变,一个不稳定的区域,只要系统处于不平衡状态,它就无法维持自身。在相变极限时,系统通常会消耗大量能量,而这些能量无法长时间维持。中国目前的工业化进程就是一个例子,这是一个快速变化的时期,增长速度非常快,能源消耗也非常高,在这个时期,大多数人将从务农的农村农民转变为在工厂和其他工业部门工作的城市居民;全新的社会经济地位。

广告

0 条回复 A 作者 M 管理员
    所有的伟大,都源于一个勇敢的开始!
欢迎您,新朋友,感谢参与互动!欢迎您 {{author}},您在本站有{{commentsCount}}条评论